

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE						
QUALIFICATION CODE: 07BOSC	LEVEL: 6					
COURSE CODE: ORC601S	COURSE NAME: ORGANIC CHEMISTRY 1					
SESSION: JULY 2019	PAPER: THEORY					
DURATION: 3 HOURS	MARKS: 100					

SECON	D OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER
EXAMINER(S)	MS. NATALIA SHAKELA
MODERATOR:	PROF. HABAUKA KWAAMBWA

	INSTRUCTIONS
1.	Answer ALL the questions.
2.	Write clearly and neatly.
3.	Number the answers clearly
4.	All written work must be done in blue or black ink and sketches can
	be done in pencil
5.	No books, notes and other additional aids are allowed

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

pKa Chart and Periodic Table

THIS QUESTION PAPER CONSISTS OF 15 PAGES

(Including this front page, ¹H NMR and IR Spectral Data, pK_a Chart and Periodic Table)

QUESTION 1: Multiple Choice Questions

[50]

- There are 25 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
- 1.1 Consider the following molecule having three labelled protons, H_a , H_b and H_c . Rank these protons in order of increasing acidity.

- A. Ha; Hb; Hc
- B. H_b; H_c; H_a
- C. Hc; Ha; Hb
- D. H_b; H_a; H_c
- 1.2 Which of the following choices list the compounds in order of increasing acidity?
- A) BrCH₂OH < CH₃NH₂< CH₃OH
- C) $CH_3OH < CH_3NH_2 < BrCH_2OH$
- B) $CH_3NH_2 < CH_3OH < BrCH_2OH$
- D) $CH_3OH < BrCH_2OH < CH_3NH_2$

- A. A
- B. B
- C. C
- D. D
- 1.3 Which of the following statements is true in comparing ethane, ethene and ethyne to one another?
 - A. Ethyne is the weakest acid and has the longest C-H bond distance.
 - B. Ethyne is the strongest acid and has the shortest C-H bond distance.
 - C. Ethane is the strongest acid and has the longest C-H bond distance.
 - D. Ethene is the strongest acid and has the shortest C-H bond distance.

- 1.4 Which statements about acid-base equilibria are true?
 - I. The pKa is the negative log₁₀ of the acid equilibrium constant
 - II. A stronger acid has a pKa with a smaller value than a weaker acid
 - III. A stronger base has a conjugate acid which has a pKa with a smaller value than a weaker base
 - IV. The Ka = K [HA]
 - A. II, III
 - B. I, II
 - C. I, II, III
 - D. II, III, IV
- 1.5 Which of the following drawings represent the enantiomer of Compound X?

- A. A
- B. B
- C. C
- D. All of them
- 1.6 Which of the following properties are not identical for constitutional isomers?
 - I. Molecular formula
- II. Molecular Weight
- III. Order of attachment of atoms
- **IV. Physical Properties**

- A. I; IV
- B. II; III
- C. I; II
- D. III; IV

1.7 Which is the structure of trans-1-ethyl-3-isopropylcyclohexane?

- A. A
- B. B
- C. C
- D. D
- 1.8 How many stereogenic centres are present in the following compound?

- A. 0
- B. 1
- C. 2
- D. 3
- 1.9 How are compounds A and B below related?

A

B

- A. A and b are enantiomers
- B. A and B are diastereomers
- C. A and B are constitutional isomers
- D. A and B are two representations of the same compound

1.10 Which step would most likely have the largest activation energy?

- A. Step 1
- B. Step 2
- C. Step 3
- D. It cannot be determined from the information provided

1.11 The IUPAC name of the compound below is:

- A. 2-chloro-4-isopropyl-2,6-dimethyloctane
- B. 2,6-dimethyl-2-chloro-4-isopropyloctane
- C. 7-chloro-5-isopropyl-3,7-dimethyloctane
- D. 2-chloro-4-isopropyl-2,7-dimethyloctane

1.12 What is the IUPAC name for the following compound?

- A. cis, trans-2, 4-heptadiene
- B. 2Z,4Z-2, 4-heptadiene
- C. cis, cis-2, 4-heptadiene
- D. trans, trans-2, 4-heptadiene

1.13 Using Markovnikov's rule, predict the position of the Cl atom in the major product from the reaction of 1-methylcyclohexene with HCl.

- A. A
- B. B
- C. C
- D. D
- 1.14 Which of the following compounds has the highest boiling point?

- A. A
- B. B
- C. C
- D. D
- 1.15 Which of the following alkenes will react faster with water in the presence of a small amount of H_2SO_4 ?

В

- D. A, B and C
- E. B and C

- ,
- A. A
- B. B
- C. C
- D. D

1.16 Determine the product of the following reaction:

- **A.** \(\rightarrow \)
- B. OH

- c. 🙏
- D. 0

- A. A
- B. B
- C. C
- D. D

1.17 Which of the following statements about an SN1 mechanism is true?

- A. The reaction is fastest with primary halides
- B. The rate of the reaction increases when the solvent is changed from DMSO to Ethanol.
- C. The rate of the reaction decreases when the solvent is changed from DMSO to ethanol $\,$
- D. The identity of the leaving group does not affect the reaction rate.

1.18 Which of the following statements is (are) true about an E2 elimination reaction?

- A. It is fastest with 3° Halides
- B. It exhibits second-order kinetics
- C. A better leaving group should make a faster reaction
- D. All of the above are true
- 1.19 A tertiary halide reacts with a weak base and nucleophile. The reaction will proceed via which of the following mechanism(s)?
 - A. S_N1
 - B. S_N1 and E1
 - C. E2
 - D. S_N1 and E2

1.20 What is the product of the reaction below?

- В. С
- c. (
- D. SH

- A. A
- B. B
- C. C
- D. D
- 1.21 Which of the following compounds is most likely to show first-order kinetics in a substitution reaction?

- A. A
- B. B
- C. C
- D. D
- 1.22 Given the following substitution reaction, what would the effect be of changing the solvent from CH_3OH to $(CH_3)_2S=O$?

- A. The rate would increase because SN2 reactions favour a polar aprotic solvent.
- B. The rate would decrease because SN1 reactions favour a polar protic solvent
- C. The reaction rate will not be affected
- D. The potential change cannot be predicted

- 1.23 Which of the following anions is the best leaving group?
 - $CH_3CH_3O^-$ OH $CH_3-C^-O^-$ A. B. C.
 - A. A
 - B. B
 - C. C
 - D. A and B are equal and are the best
- 1.24 How many peaks could theoretically be observed in the ¹H NMR signal(s) for each of the indicated atoms?

- A. A: 7; B: 4; C: 3; D: 3
- B. A: 7; B: 3; C: 3; D: 3
- C. A: 7; B: 4; C: 2; D: 4
- D. A: 7; B: 4; C: 3; D: 4
- 1.25 Which compound(s) does not give four sets of absorptions in its or their ¹H NMR spectrum?

- A. A
- B. B
- C. C
- D. A and B

SECTION B: [50]

QUESTION 2 [10]

What is (are) the product(s) of the following reactions? Represent the products as skeletal structures and show the stereochemistry where necessary.

Note: Each question carries 2 marks.

e)
$$H_2$$
Lindlar's catalyst

QUESTION 3 [10]

 $\label{lem:continuous} \mbox{ Determine the reagents required to achieve each of the following transformations.}$

Note: Each question carries 2 marks.

QUESTION 4 [10]

Draw a stepwise, detailed mechanism for the reaction BELOW. In order to receive full marks, show all the electron movement, the intermediates and all the products formed.

QUESTION 5 [10]

Draw a stepwise, detailed mechanism for the following reaction. In order to receive full marks, show all the electron movement; draw all the intermediates and all the products.

Hint: The reaction produces two alkene products

QUESTION 6 [10]

An unknown compound **A** has the molecular formula $C_{12}H_{16}O$. A absorbs strongly in the IR at 1715 cm⁻¹. The ¹H NMR spectral data for **A** are given below. What is the structure of **A**?

absorption	ppm	ratio of absorbing H's
singlet	1.0	6
triplet	1.2	3
quartet	2.2	2
broad singlet	7.0	5

END OF EXAMINATION QUESTIONS

GOOD LUCK!

¹H NMR SPECTRAL DATA

Characteristic Chemical Shifts of Common Types of Protons

Type of proton	Chemical shift (ppm)	Type of proton	Chemical shift (ppm)
С-H sp³ /	0.9–2	C=C sp ²	4.5–6
 RCH₃ R₂CH₂ R₃CH 	~0.9 ~1.3 ~1.7	Н	6.5–8
Z C	1.5–2.5	R C H	9–10
—C≡C−H	~2.5	R OH	10–12
Sp^3 Z $Z = N, O, X$	2.5–4	RO—H or R—N—H	1–5

Important IR Absorptions

O-H $3600-3200$ strong, brown by strong, brown by strong, brown by strong	***	iportant in Aboot phono	
N−H 3500–3200 medium C−H \sim 3000 • C_{sp}^3 −H 3000–2850 strong • C_{sp}^2 −H 3150–3000 medium • C_{sp} −H 3300 medium C≡C 2250 medium C≡N 2250 medium C=C 1800–1650 (often ~1700) strong C=C 1650 medium	Bond type	Approximate ṽ (cm⁻¹)	Intensity
$C-H$ ~3000 • C_{sp}^3-H 3000–2850 strong • C_{sp}^2-H 3150–3000 mediun • $C_{sp}-H$ 3300 mediun $C\equiv C$ 2250 mediun $C\equiv N$ 2250 mediun $C\equiv C$ 1800–1650 (often ~1700) strong $C\equiv C$ 1650 mediun	O-H	3600-3200	strong, broad
• C_{sp^3} – H 3000–2850 strong • C_{sp^2} – H 3150–3000 medium • C_{sp} – H 3300 medium $C \equiv C$ 2250 medium $C \equiv N$ 2250 medium $C \equiv O$ 1800–1650 (often ~1700) strong $C \equiv C$ 1650 medium	N-H	3500–3200	medium
• C_{sp}^2 -H 3150–3000 medium • C_{sp} -H 3300 medium C≡C 2250 medium C≡N 2250 medium C=O 1800–1650 (often ~1700) strong C=C 1650 medium	C-H	~3000	
• C _{sp} -H 3300 medium C≡C 2250 medium C≡N 2250 medium C=O 1800-1650 (often ~1700) strong C=C 1650 medium		3000-2850	strong
C≡C 2250 medium C≡N 2250 medium C=O 1800–1650 (often ~1700) strong C=C 1650 medium	 C_{sp²}-H 	3150–3000	medium
C≡N 2250 medium C=O 1800–1650 (often ~1700) strong C=C 1650 medium	 C_{sp}-H 	3300	medium
C=O 1800–1650 (often ~1700) strong C=C 1650 medium	C≡C	2250	medium
C=C 1650 mediun	C≡N	2250	medium
	C=O	1800-1650 (often ~1700)	strong
1600, 1500 mediun	C=C	1650	medium
		1600, 1500	medium

						,			_												_			
helium 2	4 0026	neon	2	Se	20.180	argon	2	Ā	39.948	knypton	36	Ż	83.80	nouex	25	×e	131.29	radon	ם פ		777			
		fluorine	ກ	Ш	18,998	chlorine		\overline{c}	35.453	bromine	32	ğ	79,904	iodine	23		126.90	astatine	\$ \	1 2000	(213)			
		oxygen	∞	0	15.999	Sulfur	0	ഗ	32.065	selenium	34	Se	78.96	tellurium	25	P	127.60	polonium	2	2000	[503]			
		nitrogen	_	Z	14.007	phosphorus	0	<u>a</u>	30.974	arsenic	33	As	74.922	antimony	21	S	121.76	bismuth	3 0	308 00	200.002			
		carbon	٩	ပ	12.011	silicon	4	S	28.086	germanium	32	G G	72.61	E	20	S	118.71	lead 0.0	2 0	202.5	mulgadium	114	DOOD	12891
		poron	က	m	10.811	aluminium	2	4	26.982	gallium	ج ج	Ga	69.723	mdium	49		114.82	thallium 84	F	204 38	00.107			
										zinc	<u>۾</u>	Zn	62.39	cadmiun	48	ဝိ	112.41	mercury	7	D &	ununpirum	112	0 0 0	1777
										copper	73	S	63.546	silver	47	Ad	107.87	plog 20		1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	unununium	111	35	107.01
										_				_							+		S	
										cobalt	27	၀	58.933	rhodium	45	Z	102.91	ridium 77	- <u>L</u>	192 22	meitnerium	109	>	12681
										_	_		-	_	_	-					+		S	
											_		_				_				-		8	
																							SQ	
									- 1	_	_			=	_		-				100		90	
										titanium	77	 	47.867	irconium	40	Z	91.224	hafnium 72	4	178.49	herfordium	104	ž	12611
										candium	77	သ	44.956	yttrium	39	>	88.906	utetium		174.97	wrencium rut	103	L' R	[262]
									L	S									*	_	-			
		eryllium	4	Be	9.0122	agnesium 12	4 1	S N	24.305	salcium	70	ري ص	40.078	trontium	28	က်	87.62				-		Ra	[526]
hydrogen 1					_	_	_		-				_				-				_			
ć		_			٦	ทั	-		2	<u>o</u>			e e	2		Landana	00	ਲੋ			fra			

holmium erbium thulium 67 68 69	Dy Ho Er Tm Yb	164.93 167.26 168.93	einsteinium fermium mendelevi	99 100 101	Es Fm Mc	
	2					-
gadolinium 64	Gd	157.25	curium	96	CH	
europium 63	Д	151.96	americium	92	Am	10101
samarium 62	Sm	150.36	plutonium	94	2	
promethium 61	E	[145]	neptunium	93	S S	1200
neodymium prometh	Z	144.24	uranium	92	>	20000
praseodymium 59	مَ	140.91	protactinium	91	Ва	20 400
cerium 58	Ce	140.12	thorium	90	F	20000
lanthanum 57	9	138.91	actinium	83	Ac	12007
anthanide series				* Actinide series		